Determinants of Perfect Complexes and Euler Characteristics in Relative K0-groups

نویسنده

  • MANUEL BREUNING
چکیده

We study the K0 and K1-groups of exact and triangulated categories of perfect complexes, and we apply the results to show how determinant functors on triangulated categories can be used for the construction of Euler characteristics in relative algebraic K0-groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Se p 20 03 CUBIC STRUCTURES AND A RIEMANN - ROCH FORMULA FOR EQUIVARIANT EULER CHARACTERISTICS TED

The computation of Euler characteristics via geometric invariants is one of the fundamental problems of topology and geometry, and more recently of number theory. The incarnation of this problem we will consider in this paper concerns the equivariant Euler characteristics of coherent sheaves on projective flat schemes over Z on which a finite group G acts. These Euler characteristics lie in the...

متن کامل

ε-constants and equivariant Arakelov Euler characteristics

Let R[G] be the group ring of a finite group G over a ring R. In this article, we study Euler characteristics of bounded metrised complexes of finitely generated Z[G]-modules, with applications to Arakelov theory and the determination of ǫ-constants. A metric on a bounded complex K• of finitely generated Z[G]-modules is specified by giving for each irreducible character φ of G a metric on the d...

متن کامل

ON RELATIVE CENTRAL EXTENSIONS AND COVERING PAIRS

Let (G;N) be a pair of groups. In this article, first we con-struct a relative central extension for the pair (G;N) such that specialtypes of covering pair of (G;N) are homomorphic image of it. Second, weshow that every perfect pair admits at least one covering pair. Finally,among extending some properties of perfect groups to perfect pairs, wecharacterize covering pairs of a perfect pair (G;N)...

متن کامل

Se p 20 03 CUBIC STRUCTURES AND A RIEMANN - ROCH FORMULA FOR EQUIVARIANT EULER CHARACTERISTICS

The computation of Euler characteristics via geometric invariants is one of the fundamental problems of topology and geometry, and more recently of number theory. The incarnation of this problem we will consider in this paper concerns the equivariant Euler characteristics of coherent sheaves on projective flat schemes over Z on which a finite group G acts. These Euler characteristics lie in the...

متن کامل

One Dimensional Internal Ballistics Simulation of Solid Rocket Motor

An internal ballistics model has been developed for performance prediction of a solid propellant rocket motor. In this model a 1-D unsteady Euler equation with source terms is considered. The flow is assumed as a non-reacting mixture of perfect gases with space and time varying thermo physical properties. The governing equations in the combustion chamber are solved numerically by using the Steg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008